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INFACT: EIR Narrative          1 

1. Significance 

1.1 National Priority  

“The long-term strength of our workforce requires that the full range of STEM and non-STEM 

career pathways be available to all Americans. This imperative is undergirded by two 

foundational principles: first, that every individual in the United States is afforded the 

opportunity to reap the benefits of advancements in science and technology; second, that our 

ability to respond to national needs and remain globally competitive will require the capabilities 

and ingenuity of individuals of diverse backgrounds.” National Science Board (2015, p. 22) 

1.2 Absolute Priorities and Competitive Preference Priority 

INFACT meets Absolute Priority 1 by designing a comprehensive STEM program that 

addresses the great cognitive variability among learners. INFACT will incorporate innovative 

strategies to address issues related to many commonly labeled disabilities such as specific 

learning disabilities (SLD), dyslexia, dyscalcula, ADD, and autism (hereafter called neurodiverse 

learners). INFACT will embed flexible supports that support a wide variety of learners’ 

executive function and sensory needs that are often associated with neurodiversity.  

INFACT is a field-initiated innovation that meets Absolute Priority 3 and the 

Competitive Preference Priority to strengthen CS and STEM education. INFACT infuses 

fundamental practices of CT within STEM teaching and learning to leverage the strengths and to 

support the challenges of learner variability in today’s classrooms. 

1.3 Rationale  

The future workforce needs computational thinkers. Growth in STEM employment is outpacing 

the growth of employment at large (NSF, 2015), and computer occupations are projected to yield 

half a million new jobs between 2014 and 2024 (NSF, 2018). Further, the nature of STEM jobs is 
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INFACT: EIR Narrative          2 

becoming increasingly computational (Kaczmarczyk,  Dopplick, & EP Committee, 2014), 

meaning that part of preparing learners for STEM fields includes computational thinking and 

computer science instruction. The Computer Science workforce, however, represents a 

conspicuously narrow demographic. Neurodiverse students are underrepresented in STEM 

university programs and the STEM workforce despite an apparent inclination towards STEM for 

many neurodiverse learners, such as those with autism (NSF, 2015; Wei, Yu, Shattuck, & 

Blackorby, 2017).  

Learner variability may present an opportunity to build a strong computational 

workforce. Considering neurodiversity as learner variability, as opposed to learning disability, 

leads researchers to interesting questions about how we unleash the potential in learners for tasks 

needed in our future workforce (Rose, Rouhani, & Fischer, 2013). Many neurodiverse learners 

have particular areas of strength in tasks related to CT. For example, some learners with autism 

exhibit hyper-attention and hyper-systemizing behaviors (Baron-Cohen, Ashwin, Ashwin, 

Tavassoli, & Chakrabarti, 2009). Some individuals with dyslexia show strengths in the ability to 

integrate information and build global perspectives (Schneps, Brockmole, Sonnert, & Pomplun, 

2012; von Károlyi, 2001), which may lead to better collaborative problem-solving.  

These diverse cognitive functions may translate to valuable skills such as CT and coding, 

and thus the recognition and nurturing of these talents may be crucial for the development of our 

future workforce (Martinuzzi & Krumay, 2013). For this reason, many large companies, 

including Microsoft, SAP, and Google, now have established programs or are developing 

programs specifically designed to recruit neurodiverse individuals (Wang, 2014). To prepare for 

this future workforce, educators are building materials that focus on CT within STEM (e.g., 

Weintrop et al., 2016; Grover, 2017; Wing, 2011; Barr & Stephenson, 2011) to describe the ways 
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INFACT: EIR Narrative          3 

of thinking and practices used by those who design computational systems. The K–12 education 

community is actively studying how this new and critical set of practices can be infused into 

current educational programs.  

1.4 Building Upon Promising Strategies 

There are several promising lines of research investigating how to address learner variability in 

STEM education (e.g., Israel, et al., 2018; Ke & Lee, 2016; Ray, Israel, Lee, & Do, 2018) and 

how to infuse CT within STEM teaching and learning (e.g., Weintrop et al., 2016). For INFACT, 

a consortium of these STEM education researchers, computer scientists, cognitive psychologists, 

and educational designers from universities, non-profits, and industry come together to build a 

comprehensive program that is greater than the sum of its parts.  

In particular, INFACT will build upon promising approaches to address the growing 

learning variability in today’s classrooms such as differentiation—providing unique experiences 

for each learner based upon their strengths, struggles, and choices (Tomlinson & Moon, 2013)—

and meeting the individual cognitive, emotional, and social needs of each child and their unique 

preferences and abilities (Immordino-Yang, Darling-Hammond, & Krone, 2018). Because 

differentiated classroom instruction requires that teachers understand and monitor what each 

learner knows, what they are ready to learn, and what resources can meet these needs 

(Tomlinson & Moon, 2013), INFACT materials will not only include cognitive supports for 

different learners, but innovative forms of formative assessment to be able to measure what 

learners really know. Many neurodiverse learners have cognitive differences that impact their 

ability to listen, think, speak, read, write, spell, or do mathematical calculations (USDoE, 2017), 

rendering testing ineffective at measuring learning outcomes (Thiede et al., 2015; Brendefeur et 

al., 2015). INFACT will use innovative formative assessments that use information about what 
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INFACT: EIR Narrative          4 

learners do in an activity, rather than what they can say on a test, which show promising 

evidence for assessment of neurodiverse learners (Ke & Lee, 2016, Grover, 2019; Rowe, Asbell-

Clarke, & Baker, 2015; Rowe et al., 2017; Rowe et al., 2018; Rowe et al., 2019). 

1.5 Exceptional Approaches to Absolute and Competitive Priorities 

INFACT builds upon promising evidence in learning materials that infuse CT into STEM by 

bringing together several strong lines of research into a comprehensive program. The exceptional 

approaches that INFACT deploys are listed in Table 1 and described in the next section. 

Table 1: List of Exceptional Approaches to EIR Absolute and Competitive Priorities 

 

 

2. Description of Exceptional Approaches 

2.1 Integrating of Existing Promising Learning, Assessment, and Teaching Materials  

INFACT brings together a group of leading researchers as members of the consortium who will 

design the comprehensive program elements. Together, we will curate existing materials and 

design sequences of activities within and across grades 3–8 to build foundational and applied CT 

within STEM teaching and learning. INFACT will also include contributions from colleagues 
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who have materials with promising evidence to infuse CT into STEM learning and assessment 

(e.g., CT assessments from James Lester from NCSU). These colleagues will serve as advisors.  

Table 2: List of Consortium Members, Contributions, Research Sites, and Citations  
 

 

The INFACT learning materials will include a variety of digital and non-digital activities 

that embed CT practices within STEM contexts. For example, TERC’s CT-learning game, 

Zoombinis (Rowe et al., 2018), has been used along with supporting offline activities in a 

nationwide study of over 50 classrooms. Zoombinis classroom materials support the development 

of Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design during 

gameplay and help teachers connect those CT practices to mathematical problem-solving and 

scientific investigations. Researchers at University of Maryland (UMD) use activities with 

Sphero robots to support grade 4 math learning throughout the Washington, DC Public School 

district. Researchers at Looking Glass Ventures (in collaboration with Stanford University and 
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SRI International) have designed and empirically investigated learning activities and assessments 

for key CT elements in middle schools in the SF Bay Area to examine learning of algorithmic 

thinking and its key elements such as variables, expressions, loops, abstraction that are valuable 

foundations for CT in any STEM setting. Ke at Florida State University (FSU) and Israel at 

University of Florida (UFLA) are both researching innovative methods to support learner 

variability in CT and STEM using mixed reality interfaces and games. Digital Promise has been 

studying CT implementation within schools and large school districts, as well as providing 

design models in their Learner Variability Project, and is bringing both lines of work to 

INFACT. 

2.2 Designing a Coherent CT Learning Progression for grades 3–8 

The consortium will build from these research-based learning materials to co-design a coherent 

CT progression for grades 3–8 that can be infused into STEM curriculum (Table 3). Although 

the progression may be iterative, with a back-and-forth between foundation building and 

application of CT in STEM, we will support a gradual transition from foundational practices to 

application in STEM. 

Table 3: Focus Points of CT Progression  

 

TERC has been exploring the infusion of CT into differentiated STEM teaching and 

learning in grades 3–8 during a Research-Practice Partnership with Braintree Public Schools 

(BPS) in Braintree, MA. Based on the promising evidence from TERC’s RPP, the progression 

will begin in grade 3 with everyday activities that build foundational concepts of problem 
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decomposition, pattern recognition and abstraction, and algorithm design. Elementary teachers 

use games, puzzles, and sorting activities to build a conceptual foundation for these CT practices. 

Concurrently, technology teachers gradually introduce coding, modeling, and design tools that 

employ these foundational practices and prepare students to use them in specialized STEM 

classes in middle school. STEM teachers in middle school can then engage students in CT-

infused projects without have to take time to teach the required tools. INFACT will build upon 

this evidence to design a flexible progression of CT-infused STEM teaching and learning for 

grades 3–8.  

2.3 Leveraging CT to Address Learning Variability  

A key innovation of INFACT is leveraging the natural intersection between CT and learner 

variability. Much of learning variability revolves around executive function, sensory needs, and 

cognitive load. Executive function (EF) tasks are involved in planning and organizing goal-

oriented tasks, and invoke the neural processes of attention, working memory, and information 

processing (Denkla, 1994, Semenov & Zelazo, 2018). Learners with strong EF skills are able to 

pay attention and engage their thoughts and emotions in a goal-directed way that sets them up for 

classroom success, and avoids situations where learners are derailed by distractions and 

emotional dysregulation (Semenov & Selazo, 2018). To help support EF strategy development, 

playful activities may increase persistence, and learners may benefit from experiences with 

choice, symbol manipulation, and hands-on opportunities to construct and navigate among 

multiple representations of a challenge (Moran & Gardner, 2018).  

Interestingly, many of the cognitive tasks required for high-level executive functioning 

overlap with CT practices, and thus may present as strengths and/or weaknesses for many 

neurodiverse learners (Table 4). This intersection between CT and executive function will guide 
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the selection of INFACT materials and design of supports and be a focus of the design research. 

Embedded supports within INFACT will be designed to support these CT practices and the 

related EF for a broad range of learner variability. 

Table 4: Intersection of CT Practices and Executive Function 
 

 

2.4 Materials for Learning Variability 

INFACT will draw from research in special education, cognitive psychology, and educational 

neuroscience to embed supports for learner variability in select INFACT materials. The 

Universal Design community, focusing on inclusion of physically and neurodiverse populations, 

emphasizes the need for multiple representations of a concept (e.g., Meyer, Rose & Gordon, 

2014), which is consistent with research in early mathematics education research (e.g., Fuchs et 

al., 2011). However, the increased cognitive load associated with multiple elements presented 

simultaneously may be overwhelming, particularly for those students lacking prior knowledge 

(Lee, Plass & Homer, 2006). There is no one-size fits all solution, which is why differentiation is 

so powerful (Tomlinson & Moon, 2013).  

We will design a flexible set of scaffolds for interactive INFACT materials that detect 

differences in how learners interpret words and symbols (e.g., dyslexia and dyscalcula), their 

sensory needs (e.g., sensitivity to stimuli), and their executive function needs (e.g., organization 
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and metacognition) to provide an adaptive, customized learning experience. INFACT materials 

will provide flexibility in how representations (e.g., text and numbers) are used by offering a 

variety of manipulatives and graphical representations and gradually transition from one 

symbolic notation to another. For example, TERC’s RPP is co-designing an elementary math 

interactive that uses CT to support place value understandings, with unit construction and 

coordination for 1s, 10s, and 100s. Embedded graphical organizers support learners as they sort 

through objects with different units, and also offers multiple representations of information and 

gradually move learners from their preferred representation. Graphical overlays can also provide 

flexible and versatile charts and tables that may help emphasize the salient STEM concept where 

CT is being applied.  

Supports for learner variability will also draw from research on the role of metacognition 

and reflection in EF (Israel et al., 2016; Semenov & Selazo, 2018). Learners are required to 

engage their working memory to remember new information at the same time that they reflect on 

what they already know. Scaffolds such as graphical organizers, milestones, visual timelines, and 

other supports will help learners keep track of their goal and progress towards that goal.  

INFACT supports will also address variability in learners’ sensory needs. When working 

with learners with autism, we will draw from the promising evidence of Benton et al. (2014) who 

offered quiet and familiar environments, visual organizers, and consistent session structure and 

routines to learners with autism. When they adapted a similar design model for learners with 

dyslexia, they decreased distractions and added multi-sensory activities, short and focused 

activities, and easier-to-read fonts. Because of the frequent co-morbidity of multiple conditions 

related to neurodiversity (Mayes & Calhoun, 2006; Willcutt, 2014), we will emphasize flexibility 

in the design of INFACT materials to support each learner’s unique set of needs and preferences.  
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2.5 Assessments and Adaptive Interactives 

INFACT is framed in the learning science framework that learning materials and assessment are 

inextricably linked (NRC, 2001) and that adequate assessment is critical for differentiated 

learning (Tomlinson & Moon, 2014). Alongside the INFACT CT Progression, we will build a 

progression of competencies that can be used in a variety of formative assessment models. These 

formative CT assessments will be embedded within a select set of INFACT learning activities 

and will guide the adaptation and customization of those activities. INFACT will leverage 

several innovative methods that show promising evidence to assess implicit learning—learning 

that can be may be masked by tests that rely on text, coding, or other symbolic formalisms that 

may prevent accurate measurement of STEM knowledge (Baroody, Bajwa & Eiland, 2009; 

Chong & Seigel, 2008; Rowe et al., 2015). We will use embedded assessments within digital 

learning experiences, such as games and VR simulations (e.g., Ke, Shute, Clark, & Erlebacher, 

2019), and within coding and modeling activities (e.g., Grover et al., 2017), as well as process-

based assessments for project-based learning (Asbell-Clarke & Bradbury, 2017).  

Each of these assessment models has different rigorous research and validation models to 

support claims of evidence of learning outcomes. Building from game-based assessment using an 

Evidence-Centered Design (ECD) model (Shute & Kim, 2014; Mislevy & Riconscente, 2005), 

TERC’s current research deploys educational data mining (EDM) methods such as automated 

detectors of strategies and CT practices in gameplay logs. Starting with extensive human analysis 

(Rowe et al., 2015), researchers have identified CT practices within gameplay behaviors in the 

logic puzzle game, Zoombinis (Rowe et al., 2017). The datalogs containing each “click” in the 

game, along with a timestamp and unique PlayerID, are collected and organized in our existing 

game-based, learning research architecture called DataArcade. DataArcade allows efficient 
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human labeling of CT during simulated “video replays” generated from the data logs that 

eventually leads to the building of automated detectors of CT practices during gameplay. In 

another example, FSU’s current research in virtual reality and game-based training integrates 

individualized training of representational flexibility for learners on the autism spectrum into 

CT-infused STEM activity (Ke & Lee, 2016; Ke & Moon, 2018). Bayesian networks (BNs) and 

other machine learning methods (e.g., random forest and support vector machine) are used to 

accumulate these measures and make a diagnostic estimate on an individual’s task-relevant 

representational competence level.  

These and other novel methods will be used to design innovative formative assessments 

for INFACT that both inform the teacher with actionable suggestions of next steps, and inform 

the interactive itself on how to adapt to best suit the unique learner. TERC’s DataArcade already 

has this real-time adaptive functionality available. By monitoring the a) sensory choices the 

learner makes (e.g., color and sound); b) the learner’s mastery as evidenced by the automated 

detectors; and other features such as c) the learner’s productive and/or unproductive persistence 

(Beck & Gong, 2013; Kai et al., 2017 ), an adaptive system can then customize the interface, the 

hints, and the pacing of the puzzles for individual learners.   

2.6 Teacher Tools and Professional Development 

One of the greatest challenges of CT education in elementary and middle school is that the 

subject area is new to most teachers and there are no existing models of learning, teaching, and 

assessment for teachers to have learned or used previously. CT also must fit within the existing, 

overstuffed curriculum and busy lives of teachers and staff. To tackle this challenge, we will 

build from promising evidence for teacher professional development in TERC’s RPP with BPS 
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as well as the researchers of Digital Promise who work with teachers nationwide, including the 

League of Innovative Schools, on the infusion of CT throughout their existing curriculum. 

As learned from our RPP, INFACT PD will respond to teacher and administrators’ goals 

to supplement professional development (PD) efforts already underway in any school or district. 

INFACT will use a variety of modes of PD, created through an iterative onsite process with 

consortium members, and focusing on scalable implementation. We will design a scalable suite 

of resources that will include a series of short videos for teachers and online virtual workshops to 

extend existing PD efforts at a district level. Examples include: video resources with short 

explanations and examples of CT in everyday life; an easy-to-navigate teacher interface and 

system that follows the CT progression and links to materials for each grade and subject area; 

virtual working sessions on INFACT teacher tools to ask questions and get support; and 

materials and virtual support for on-site teacher professional learning communities (PLCs). 

3. Project Design and Management Plan 

3.1 Goal  

The long-term goal of INFACT is to broaden participation in STEM, particularly by leveraging 

the intersection between learning variability and CT. This goal will provide CS opportunities 

more equitably for all learners, and has the potential to strengthen our future workforce by 

including learners with critical talents that may otherwise go untapped. 

3.2 Objective 

The objective of INFACT is to design, develop, implement, and study a comprehensive program 

that promotes the building of a conceptual foundation for CT within STEM in elementary school 

and the application of CT into STEM projects throughout middle school. INFACT will be 

designed to prepare all upper elementary- and middle-school learners, with respect to learning 
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variability, by aligning differentiated learning materials, learning assessments, and teacher PD. 

To achieve this objective, we have outlined a 4-year timeline of major activities (Table 5). 

Table 5: Timeline of Major Activities to Achieve INFACT Objective 

 

3.3 Anticipated Learning Outcomes 

INFACT is intended to improve learners’ mastery of CT practices; their self-efficacy as CT 

problem solvers; their self-efficacy as STEM problem-solvers; and their desire to participate in 

more STEM activities. In particular, we intend for INFACT to narrow the gap between 

neurodiverse learners and the general population in these areas. We anticipate that learners in 

STEM classes who use INFACT (treatment condition) will show more improvement in these 

outcomes than classes that use other materials for the same amount of time to teach CT in non-

INFACT STEM classes (control condition). We also anticipate that learners who typically 

struggle academically (e.g., are identified by an IEP) may benefit the most from INFACT, and 

that they may reveal CT practices in the INFACT learning assessments that are not revealed in 

current forms of CT assessment. 

3.4. Outcome Measures 

All participants in the study will take grade-appropriate pre- and post-tests on INFACT outcome 

measures including a) Student Mastery of CT Practices (Rowe et al., 2019), and b) Student 
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Disposition and Self-Efficacy in CT and STEM problem solving (e.g., Meluso et al., 2012). 

Student Mastery of CT practices will be measured through items that focus on fundamental 

practices of CT. We will use online logic puzzles previously designed and validated for grades 

3–8 used in TERC’s prior research (Rowe et al., 2019) to measure learners’ performance in 

Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. Figure 1 

shows an example of an item assessing whether or not a student can abstract (or generalize) a 

rule from the patterns. 

 

Figure 1: Example CT Mastery Outcome Measure: Abstraction  

To expand and refine these items, while retaining their non-reliance on heavy text or coding 

nomenclature, the consortium will draw from an active body of research currently underway in 

CT assessment (e.g., Basu et al., 2019; Grover, 2017, 2019; Rowe et al., 2019; Tissenbaum et al., 

2018). Many CT assessments emerging in the field rely on the construction or analysis of coding 

artifacts (Moreno-León & Robles, 2015; Ota, Morimoto, & Kato, 2016) or textual instruments 

(e.g., Dagienė, Stupurien, & Vinikien, 2016; Izu et. al, 2017) or a combination (Dagiene & 

Futschek, 2008; Wiebe et. al., 2019). The INFACT consortium will curate promising items and 

adapt their delivery to accommodate for learner variability. By curating, adapting, and 

correlating a well-chosen selection of these CT outcome measures, we will also contribute to the 
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field the first comprehensive set of standardizable outcome measures of CT practices that are 

suitable for a broad range of learner variability.  

Since neurodiverse learners may struggle with text-based questionnaires, we will also 

adapt existing textual instruments for self-efficacy (e.g., de Cássia Martinelli et al., 2008) and 

STEM dispositions (e.g., Knezek, et al., 2012) into an interactive format, based on guidance 

from Bandura (2006). By having a simulated student give voice to low self-efficacy or low 

disposition, adaptations may lessen social desirability bias (cf., Nederhof, 1985; Fisher, 1993). 

The re-validation of these instruments is part of the Impact Study 1 design. 

 
Figure 2: Example of Modified Self-Efficacy Item 

 

In addition to these overarching pre-post measures for all participants, when available we 

will include information from each participant’s interactions with any INFACT adaptive 

interactive formative assessments, as well as information from teachers about other assessments 

used during the implementation period to build a broader measure of each learner’s outcomes. 

4. Research and Evaluation Plan 

To achieve the research objectives (Table 6), the consortium will conduct nearly two years of 

iterative design research and development of the comprehensive. Impact Study 1 near the end of 

year 2 will serve as a pilot test of the program and research instruments to prepare for Impact 
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Study 2 in year 3, which is a quasi-experimental study of at least 960 students to measure the 

impact of INFACT on their CT practices and their self-efficacy in STEM and CT.  

Table 6: Research Objectives with Outcome, Process, Sample, and Methods 

 

4.1 Design Research  

Guided by the Diversity for Design (D4D) framework (Benton et al., 2014), we will conduct an 

extensive participatory design process of the program elements (Druin, 1999) in the first 2 years 

of the project. 

4.1.1 Sample. We will work with groups of diverse learners in grades 3–8, drawing samples 

from each of the schools and districts where the consortium of researchers is already working 

(Table 1). These audiences include a broad range of learner variability and leverage longstanding 

research partnerships from the consortium’s prior work (see letters of collaboration).  

4.1.2 Design Research Questions. During the Participatory Design Process, we will test 

versions of selected INFACT materials appropriate for the given audience. For example, in 

elementary classes we might use a sequence or combination of a) the Zoombinis game with 
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associated offline activities to build foundational knowledge of CT practices; b) Sphero activities 

in mathematics; and c) a puzzle station in classes where learners solve CT problems 

collaboratively. Researchers at each setting will observe, collect recordings and artifacts, and 

informally interview learners and teachers during design testing. The dyad or triad of research 

teams working on any one sequence will meet frequently through the design process to exchange 

and interpret findings. The questions guiding the design research include: 

DRQ1: Which features of the INFACT activity sequences support a CT progression? 

How can those features be generalized and expanded upon with other INFACT activities? 

DRQ2: What types of features of INFACT leverage the intersection between CT and EF? 

How can the materials be optimized to serve a broad range of learner variability? 

4.1.3 Design Research Methods. The design research process will begin with a 3-day meeting 

at TERC for the consortium to lay out all our existing materials and find natural sequences and 

combinations. By the end of the meeting, we will have the skeleton of a CT progression for 

grades 3–8, and will have identified gaps that require new development. Throughout year 1 and 

2, teams whose projects are complementary in a sequence will work together in small groups to 

refine a set of activities that focus on one conceptual thread of CT or one type of CT application. 

We will conduct approximately 2–3 design sessions for each of about 5 activity sequences 

throughout the first year, selecting participant groups to ensure broad learner variability (as 

identified by classroom teachers) in the overall sample. During design sessions, we will 

introduce an iterative sequence of paper prototypes and functional working prototypes for the 

sequences of INFACT activities. Because we are working with young, neurodiverse learners who 

may have trouble expressing their understandings in writing or on a test, we will use a think-

aloud protocol along with manipulatives to reveal their CT and STEM thinking as they proceed 
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through the INFACT activities. When necessary and available, we will work with learners’ 

regular learning specialists to communicate in the most effective manner during the think-aloud.  

4.2 Project Evaluation 

New Knowledge Organization Ltd. (NKO) will serve as external evaluators for this project, 

conducting a series of quantitative and qualitative studies to provide valid and reliable data on 

relevant outcomes, as well as guidance for effective strategies. 

INFACT focuses in narrowing the gap that exists because of learner variability. To best 

represent this audience, evaluators will disaggregate data by students’ IEP status. To assess the 

impacts of INFACT, evaluators will implement Impact Study 1: Baseline to establish baseline 

measurements for the target outcomes and validate modifications to standardized instruments; 

and Impact Study 2: Aggregate Performance Improvement to examine overall and specific 

improvements for target populations across the INFACT implementation. 

4.2.1 Overall Quasi-Experimental Design. The INFACT research design incorporates the 

student-level variable of learning needs (2 levels: students with IEPs and students without such 

plans), as well as the classroom-level variables of grade (2 levels: elementary and middle 

school), student access to technology (2 levels: high and low), student activity choice (2 levels: 

high and low), and treatment condition (2 levels: treatment and control classes). Crossing these 

factors yields a design with two types of learning needs, nested in eight types of classrooms, and 

divided in two treatment conditions (Table 7).  Because the design assigns groups at the 

classroom level but is interested in individual student outcomes, evaluators will treat our design 

as a cluster-level assignment adhering to the What Works Clearinghouse (WWC) criteria 

(USDoE, 2017, p. 19ff.). As per WWC (pp. 9–14) evaluators will track overall and differential 

attrition in design conditions. 
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Table 7: Research Design for Impact Study 2 

 

The Core Dependent Measures include Mastery of CT practices as well as STEM disposition and 

self-efficacy as CT and STEM problem-solving. Measurements of Mastery of CT practices will 

derive from the CT learning outcomes described in section 3.4, specifically the pre- and post-test 

items on Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. 

Measurements of STEM disposition and self-efficacy as CT and STEM problem solvers will 

derive from the interactive instruments that are modified from standard items. 

4.2.2 Impact Study 1: Baseline and Validation. During Year 2, evaluators will (1) modify and 

re-validate interactive versions of previously validated text-based instruments of self-efficacy 

and STEM dispositions, and (2) work with the consortium to establish baseline measurements for 

the curated and adapted CT learning outcome instruments, as per WWC (2017, pp. 27).  

4.2.2.1 Impact Study 1 Sample. Evaluators will implement Impact Study 1 in 8 classrooms with 

at least one per grade level in grades 3–8. We will draw from our networks to build a prospective 

sample for both Impact Studies, ensuring a 20% representation of students with IEPs. We will 

select 8 of these classes that are using CT in Spring of year 2 for Impact Study 1. 

4.2.2.2 Re-Validating Self-Efficacy Metrics. Evaluators will validate the interactive self-efficacy 

scale and STEM disposition for the pilot audience against previously validated text-based 

instruments with an item factor analysis, examination of communalities and measures of 

association, and reliability and stability testing. 
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4.2.2.3 Baseline Measurements of Target Outcomes. Researchers will establish baseline 

measurements for the Core Dependent Measures to: 1) assess whether the baseline classrooms 

are representative of the entire implementation and if not, make statistical adjustments as per 

WWC (2017); 2) derive the prior probabilities needed for the Markov chain Monte Carlo 

(MCMC) methods for multi-response general linear mixed models (MGLMM) used in later 

studies (cf. Hadfield, 2010; Berridge & Crouchley, 2011); and 3) test TERC’s data architecture, 

Data Arcade, to collect baseline data and match anonymous learner IDs to data streams. 

4.2.3 Impact Study 2: Aggregate Performance Improvement. During Year 3 of the proposed 

project, the evaluators will answer the following research questions: 

IS2.RQ: To what extent does INFACT build a conceptual foundation for CT within 

STEM in elementary school, and application of CT in STEM projects in middle school? 

IS2.RQa: To what extent do improvements differ between the target outcomes; in other 

words, how broad are the effects of INFACT on CT improvements? 

4.2.3.1 Impact Study 2 Sample. INFACT will be used in approximately 40 classes in 

participating schools. Digital Promise will recruit the bulk of these teachers from the League of 

Innovative Schools, which includes over 100 schools districts across 33 states serving over 3 

million K–12 students, over 40% of which have started offering CT and introductory CS 

instruction. TERC and other consortium members will supplement with the network of teachers 

who have engaged in CT research in prior research (e.g., TERC’s recent national study of over 

50 classes using Zoombinis to promote CT in grades 3–8) to ensure a representative sample with 

a broad range of learner variability.   

Evaluators will select classes in schools that have at least two equivalent classes eligible 

for the study to allow for parity between treatment and control classes. When possible, evaluators 
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will use two sections taught by the same teacher to minimize extraneous variability. Treatment 

class teachers will implement INFACT content for at least 10 classroom hours. The extent to 

which each component of INFACT is used during implementation will be recorded by the 

teacher. Control teachers will use their regular curriculum for CT for a similar amount of time. 

Both types of classes will undergo data collection for all measures. Evaluators will use TERC’s 

DataArcade to collect the data and track anonymous learner IDs across pre-INFACT and post-

INFACT data collection on learner outcomes. 

4.2.3.2 Impact Study 2 Design. The repeated measures (pre-INFACT versus post-INFACT) 

quasi-experimental design will account for learning needs, classroom types, and treatment 

condition (Table 7). This design will require at least 30 students for each of the 32 factor cells, 

totaling at least 960 students. The design will control for the socio-economics of the schools, 

time spent on INFACT at the class level, and teachers’ self-efficacy in teaching STEM (FIEI, 

2012). If possible, the design will also control for pre-INFACT student grades and STEM-related 

standardized test scores.  

4.2.3.3 Impact Study 2 Analysis. MCMC-MGLMM analysis will allow evaluators to test the 

effects of INFACT on the Core Dependent Measures while accounting for group-level 

differences in the nested quasi-experimental factors. Evaluators will use the baseline 

measurements obtained during Impact Study 1 (see 4.2.2.2 above) to establish the prior (naive) 

probabilities of measurements without the random effects of nested factors.  

To ensure parity, evaluators will compare the quasi-experimental design model and a 

second model based on propensity score analyses (cf. WWC 2017, pp. 31–32) of the nesting 

factors (learning needs, grade levels, and school types) and the school-level covariates (average 

socio-economic status, STEM grades, and test scores) to describe the effects of INFACT. In 
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addition to testing the multivariate effects of INFACT on the dependent measures (answering 

IS2.RQ), evaluators will also contrast improvements on the four CT practices (answering 

IS2.RQa). 

4.2.4 Implementation Research. In parallel with the aggregate learning assessment (Impact 

Study 2), the implementation study will qualitatively characterize and assess the validity of our 

classroom-level variables (see section 4.2.1), seeking to answer the following research question:  

IMPRQ1: How does INFACT implementation vary in different types of classrooms?  

In Year 3, two evaluators will conduct one full week of observational research in eight 

classrooms representing maximum variation among the implementing classes. Observation will 

take place when the teacher first introduces INFACT activities in the classroom. One evaluator 

will focus on individual student engagement using the Baker Rodrigo Ocumpaugh Monitoring 

Protocol (BROMP) (Ocumpaugh, Baker, & Rodrigo, 2015), and the other will focus on the 

whole classroom by using an ecological observation protocol (cf. van Lier, 1997). These 

observations will be time-aligned with each other and with time-stamped DataArcade logs for 

analysis, enabling us to draw connections between classroom-level phenomena and individual 

engagement. In addition, classroom interactions will be audio-recorded and CT-focused activities 

will be fully transcribed, allowing evaluators to use discourse-analytic methods to compare 

teacher and student framing of computational thinking, following other research on student 

socialization into subject-specific language use (e.g., Kobayashi, Zappa-Hollman, & Duff, 2017; 

Duff, 2010; O’Connor, 2015; Chrisomalis, 2015; etc.).  

5. Project Team and Responsibilities  

A team of PIs from a consortium of organizations will lead this project under the direction of 

TERC’s PI, Asbell-Clarke. In the first 2 years, the consortium teams will meet in person once per 
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year and bi-weekly by videoconference to progress on the iterative design research of the 

INFACT program. Consortium members have ample experience in distributed collaborations and 

are comfortable using cloud-based tools for design and production. Underlying the consortium’s 

design efforts, each team will conduct local design research sessions that will feed into the 

collective vision and development. In year 3, NKO will conduct the impact and implementation 

studies. A skeletal team from the consortium will be on call for support needed during the 

implementation, but this will be minimal so that future scale up of the resulting model is feasible. 

In year 4, the consortium will resume in person and bi-weekly virtual meetings to disseminate 

findings and prepare the model for future scale-up. 

Dr. Jodi Asbell-Clarke will oversee the TERC leadership of all aspects of the INFACT 

project. She has led numerous federally-funded projects with national impact in game-based 

learning and CT education, including an international consortium. She will facilitate design 

meetings to efficiently and effectively share information from distributed design research 

sessions to provide a coherent and clear vision of the emergent CT progression and the workflow 

on how to achieve project outcomes. She will be supported at TERC by a project director (Kelly 

Paulson) as well as a team of researchers and developers including Drs. Elizabeth Rowe and Mia 

Almeda, learning scientists and EDM specialists; Dr. Ibrahim Dahlstrom-Hakki, cognitive 

psychologist and learner variability specialist; and Teon Edwards, curriculum and technology 

designer. 

Dr. Quinn Burke is Senior Research Scientist at Digital Promise Global (DPG) and is a 

member of the Learning Sciences Research division. Dr. Burke will lead development of teacher 

(grades 3–8) professional development modules based on the alignment of CT competencies 

with learner variability factors; he will also lead the recruitment of League of Innovative Schools 
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districts for the impact research and evaluation. Mr. Viv Vuchic, a specialist in learner 

variability, and Dr. Judi Fusco, a teacher education specialist, will support DPG’s work. 

Dr. Shuchi Grover is a Senior Research Scientist at Looking Glass Ventures and 

Research Scholar at Stanford University’s Human Sciences and Technologies Advanced 

Research (H-STAR) Institute. Her NSF-funded projects study CT learning and assessment in 

varied PK–12 contexts including introductory CS education as well as STEM classrooms that 

integrate STEM and CT. Conducting design research in middle schools in the San Francisco Bay 

Area, Dr. Grover’s team will investigate the use of learning activities and assessment targeting 

key concepts for CT and STEM such as variables, algorithmic thinking, and abstraction in grade 

6–8 CS and STEM classrooms. 

Dr. Maya Israel is is an Associate Professor of Educational Technology in the School of 

Teaching and Learning at the University of Florida (UFLA). Her NSF funded research focuses 

on supporting learner variability in STEM. Her team will contribute models of metacognitive 

scaffolding for CT and STEM and will conduct related design research. 

Dr. Fengfeng Ke is an Associate Professor of Educational Psychology and Learning 

Systems at Florida State University (FSU). She leads grants from NSF and foundations to study 

inclusive design with interactive digital technologies. Dr. Ke’s team will contribute work on VR 

assessments for learners with Autism and conduct related design research. 

Dr. David Weintrop is an Assistant Professor at the University of Maryland with a joint 

appointment between the College of Education and College of Information Studies. His research 

team will contribute Sphero.Math curriculum which investigates ways to use robotics as a 

mechanism for integrating CT into elementary (3rd and 4th grade) mathematics classes. His prior 

research has looked extensively at the potential for situating CT learning within STEM contexts. 
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Dr. John Voiklis of NKO will lead the design, analysis, and publication of impact 

evaluation results. Dr. Voiklis is a social-cognitive scientist who uses data science methods to 

study problem solving and reasoning about concepts and social norms. He has taught applied 

statistics to researchers, business students, and prospective teachers at Teachers College, 

Columbia University. 

INFACT will also benefit from advisors who lend expertise and materials but will not 

participate in the design research efforts of the consortium. These include James Lester (NCSU) 

and José Blackorby (CAST), who will attend design meetings and help review materials for their 

alignment with promising evidence in the areas of CT-infused STEM learning and accessibility 

for a broad range of learner variability.  

6. Dissemination Plan 

During the design research, and as a key part of the final year of the project, the consortium will 

position the program for distribution through an educational scale-up program. We will attend 

salient conferences (e.g., NSTA, CSTA, and ISTE) to promote the materials to teachers as well 

as to districts and materials distributors.  During the final in-person consortium meeting in year 

4, the team will put appropriate IP and commercialization agreements in place to distribute the 

comprehensive program in an scalable manner. The consortium will consult with current 

distributors of educational programs to help place the program for widespread dissemination in a 

future scale-up endeavor. Finally, the consortium members will co-present the models for CT-

infused STEM teaching and learning, and models for embedded scaffolds for learner variability 

that stem from this project work at relevant research conferences such as AERA, IMBES, and 

SIGCSE, and they will co-publish papers on this interdisciplinary work. 
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